Telegram Group & Telegram Channel
آقای Sebastian Raschka بلاگ پستی درباره Reasoning در LLM-ها نوشته. در ادامه خلاصه‌ای از این پست رو آوردم. هرچند پیشنهاد میشه که پست کامل خونده بشه. لینک


قبل از DeepSeek-R1، تقویت توانایی استدلال (Reasoning) در مدل‌ها معمولا مبتنی بر فاین‌تیون باناظر و یادگیری تقویتی (SFT+RL) بود. به این شکل که بعد از مرحله Pretrain، مدل‌ها ابتدا با یادگیری باناظر و سپس با یادگیری تقویتی آموزش داده میشدن تا قابلیت استدلال بهبود پیدا کند.

با اومدن DeepSeek-R1، روش‌های کارآمد دیگه‌ای هم برای افزایش توانایی استدلال در مدل‌ها معرفی شد:
* روش فقط یادگیری تقویتی (Pure RL)
* روش فقط یادگیری باناظر (Pure SFT)

در روش Pure RL، مدل DeepSeek-R1-Zero توسعه داده شد. در این روش، به جای استفاده از فیدبک انسانی، دو Reward به نام‌های Accuracy و Format تعریف شدن. برای مثال، در پرامپت‌ها و سوال‌های کدنویسی، Accuracy Reward بر اساس تست‌کیس‌ها و کامپایلر LeetCode تعیین میشه. یعنی مدل کد تولید میکنه، کامپایلر بررسی کرده و بر اساس صحت خروجی، به مدل فیدبک میده. 👏

این روش Pure RL باعث شد که مدل بدون نیاز به فیدبک انسانی توانایی استدلالش ارتقا پیدا کنه؛ یک دستاورد کلیدی که احتمالا در ماه‌های آینده بیشتر در موردش خواهیم شنید. تصویر بالا نشون میده DeepSeek-R1-Zero که فقط با RL آموزش دیده، چگونه یک مسئله ریاضی رو حل میکنه.

روش دوم، فقط یادگیری باناظر (SFT) هست. دیپ‌سیک یک‌ سری مدل کوچک‌تر بر پایه Llama 3 و Qwen 2.5 رو با SFT آموزش داد و جالب اینکه حتی این مدل‌ها هم تنها با SFT قابلیت استدلال پیدا کردند.

البته، وقتی مدل‌های کوچک رو با روش Pure RL آموزش دادن، عملکرد چندان جالبی نداشتن. این نشون میده که مدل‌های بزرگ‌تر (مثل DeepSeek-V3) می‌تونن با Pure RL قابلیت استدلال پیدا کنند، در حالی که مدل‌های کوچک‌تر بیشتر با Pure SFT به این توانایی می‌رسن.
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pytorch_howsam/640
Create:
Last Update:

آقای Sebastian Raschka بلاگ پستی درباره Reasoning در LLM-ها نوشته. در ادامه خلاصه‌ای از این پست رو آوردم. هرچند پیشنهاد میشه که پست کامل خونده بشه. لینک


قبل از DeepSeek-R1، تقویت توانایی استدلال (Reasoning) در مدل‌ها معمولا مبتنی بر فاین‌تیون باناظر و یادگیری تقویتی (SFT+RL) بود. به این شکل که بعد از مرحله Pretrain، مدل‌ها ابتدا با یادگیری باناظر و سپس با یادگیری تقویتی آموزش داده میشدن تا قابلیت استدلال بهبود پیدا کند.

با اومدن DeepSeek-R1، روش‌های کارآمد دیگه‌ای هم برای افزایش توانایی استدلال در مدل‌ها معرفی شد:
* روش فقط یادگیری تقویتی (Pure RL)
* روش فقط یادگیری باناظر (Pure SFT)

در روش Pure RL، مدل DeepSeek-R1-Zero توسعه داده شد. در این روش، به جای استفاده از فیدبک انسانی، دو Reward به نام‌های Accuracy و Format تعریف شدن. برای مثال، در پرامپت‌ها و سوال‌های کدنویسی، Accuracy Reward بر اساس تست‌کیس‌ها و کامپایلر LeetCode تعیین میشه. یعنی مدل کد تولید میکنه، کامپایلر بررسی کرده و بر اساس صحت خروجی، به مدل فیدبک میده. 👏

این روش Pure RL باعث شد که مدل بدون نیاز به فیدبک انسانی توانایی استدلالش ارتقا پیدا کنه؛ یک دستاورد کلیدی که احتمالا در ماه‌های آینده بیشتر در موردش خواهیم شنید. تصویر بالا نشون میده DeepSeek-R1-Zero که فقط با RL آموزش دیده، چگونه یک مسئله ریاضی رو حل میکنه.

روش دوم، فقط یادگیری باناظر (SFT) هست. دیپ‌سیک یک‌ سری مدل کوچک‌تر بر پایه Llama 3 و Qwen 2.5 رو با SFT آموزش داد و جالب اینکه حتی این مدل‌ها هم تنها با SFT قابلیت استدلال پیدا کردند.

البته، وقتی مدل‌های کوچک رو با روش Pure RL آموزش دادن، عملکرد چندان جالبی نداشتن. این نشون میده که مدل‌های بزرگ‌تر (مثل DeepSeek-V3) می‌تونن با Pure RL قابلیت استدلال پیدا کنند، در حالی که مدل‌های کوچک‌تر بیشتر با Pure SFT به این توانایی می‌رسن.

BY PyTorch Howsam




Share with your friend now:
tg-me.com/pytorch_howsam/640

View MORE
Open in Telegram


PyTorch Howsam Telegram | DID YOU KNOW?

Date: |

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

PyTorch Howsam from sa


Telegram PyTorch Howsam
FROM USA